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Abstract
A simple acoustic device consisting of two dangling side resonators grafted at two sites on a
slender tube is designed possibly to obtain transmission stop bands (where the propagation of
longitudinal acoustic waves is forbidden). In contrast to all known systems of this kind, a
spectral transmission gap of nonzero width occurs here even with this simple structure. This is
obtained by combining appropriately the zeros of transmission of the side resonators. Sharp
resonant states inside the gaps can be achieved without introducing any defects in the structure.
This results from an internal resonance of the structure when such a resonance is situated in the
vicinity of a zero of transmission or placed between two zeros of transmission, the so-called
Fano resonances. A general analytical expression for the transmission coefficient is given for
various systems of this kind within the framework of the Green’s function method. The
amplitude and the phase of the transmission are discussed as a function of frequency and it is
shown that the width of the stop bands is very sensitive to the number of side resonators. These
results should have important consequences for the suppression of low-frequency noise and for
designing filters.

1. Introduction

Low dimensional structures which have a regular distribution
of scattering centers have been seen to possess a distinct
and interesting array of acoustical properties, perhaps most
strikingly frequency band gaps within which acoustic waves
cannot propagate through the structure—a so-called phononic
band gap. In recent years, such phononic crystals have been
the subject of intense theoretical [1] and experimental [2]
investigations. Two-and three-dimensional composite systems
constituted by periodic inclusions of a given material in a
host matrix can exhibit an absolute acoustic band gap where
the propagation of sound waves and ultrasonic vibrations
is inhibited in any direction of space [3]. These acoustic
band gap materials can have many practical applications such
as elastic/acoustic filters [4]. Studies of lower dimensional

4 Author to whom any correspondence should be addressed.

systems such as 1D periodic layered media [5, 6] and
periodic waveguide systems with different geometries [7–13]
are conducted as analogs of 2D and 3D systems and for
applications in their own right. These structures are attractive
since their production is more feasible at any wavelength
scale and they require only simple analytical and numerical
calculations.

In a previous publication [9], some of the authors reported
that the acoustic transmission spectrum of 1D comb structures
exhibits large gaps. These structures, called star wave
guides, are composed of N ′ dangling side branches (DSBs)
periodically grafted at each of the N equidistant sites on
slender tubes. The gaps originate from the periodicity of the
system determined by the distance between two neighboring
sites and from the eigenfrequencies of the DSB, which play
the role of resonators. These theoretical results are confirmed
by experiments using an impulse response technique in the
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interval from 650 to 1100 Hz [12]. Unlike other 1D (e.g. Bragg
lattices), 2D or 3D phononic crystals, in which the contrast
between the constituents is a critical parameter for the stop
band existence, this star waveguide exhibits relatively large
forbidden bands even if the backbone and the resonators are
made of the same material [9].

On the other hand, we have proposed [13] an asymmetric
serial loop structure made of asymmetric slender tube loops
pasted together with slender tubes of finite length; the loops
play the role of resonators. Such a structure exhibits new
features, in comparison with the star waveguide [9]. In the
case of symmetric loops, the system becomes equivalent to a
diameter modulated slender tube [8]. Recently, we have also
investigated theoretically the propagation and localization of
acoustic waves in quasi-periodic [14] slender tubes and these
results have been confirmed experimentally [15]. In addition,
we have shown the existence of transmission zeros in the case
of asymmetric loop structure [14]. These transmission zeros
may lead to a phase drop of π and therefore negative phase
time [14]. A recent experiment by Robertson et al [16] on one
asymmetric loop filter made of two different tubes has shown
clearly the existence of such negative phase time and therefore
negative group velocity.

In the last few years, the low-frequency band gap (called
the locally resonant band gap) of a phononic crystal with
small dimension has attracted much attention [17, 18]. 3D
and 2D systems consisting of rubber-coated lead spheres and
cylinders embedded in epoxy have shown the existence of
such band gaps and their interest for blocking low-frequency
sound [19, 20]. In addition to these gaps, great interest
has been paid to the so-called Fano resonances that may
be introduced in such gaps. Some analytical models have
been proposed to explain the origin and the behavior of such
resonances [18–20]. These resonances were first theoretically
described by Fano [21] when he studied the inelastic auto-
ionizing resonances in atoms. The asymmetry (Fano profile)
was explained as a result of the interference between the
discrete resonance and the smooth continuum background in
which the former is embedded. The symmetric and asymmetric
Fano line shapes have been extensively reported in the
electronic transport in mesoscopic systems [22–24]. Mainly,
the subject of these studies was to use the so-called Aharonov–
Bohm interferometric systems to show the conditions for the
existence and the collapse of Fano resonances as functions of
the applied current voltage and magnetic flux. These studies
are also related to the investigation of the electronic states of
quantum dots [22, 23] as well as to the understanding [25, 26]
of the transmission phase jumps by π between two adjacent
resonances in relation to the experiments of Yacoby et al [27].
The analogy between scattering properties of electrons and
phonons suggests that this type of feature can also appear in
other vibrational systems [28].

The motivation behind the work presented in this paper
is to introduce a design of a simple acoustic filter consisting
of two slender side tubes, which play the role of resonators,
grafted at two sites on an infinite slender tube (see figure 1).
We show analytically and numerically that this simple structure
can exhibit transmission gaps (their widths depend on the

N N’

d1

d2

d3

Figure 1. Schematic illustration of the one-dimensional slender tube
waveguide of length d2 with dangling resonators on both sides. The
whole structure is inserted between two semi-infinite tubes. The
lengths of the dangling resonators are d1 and d3 and their numbers
are N and N ′ , respectively (here N = N ′ = 6). The boundary
conditions at the end of the resonators are rigid.

number of dangling resonators) and Fano-like resonances. In
particular, we show that the transmission amplitude through
such a system can be written following the Fano-like shape
around these resonances. In addition, we give an explicit
expression of the Fano parameter [21] as well as the position
and the width of the Fano resonances [21] as a function of
the geometrical parameters of the system. It is worthwhile to
notice that such stop bands and resonances could be observed
experimentally by using simple slender tubes as in the recent
experiments by Robertson et al [12, 16].

This paper is organized as follows. In section 2, we give
a brief review of the theoretical model used in this work as
well as the analytical results of the structure depicted above.
These results are necessary for an analytical understanding of
the new phenomenon obtained for the structure proposed in this
work. Section 3 is devoted to the transmission gaps and Fano
resonances. The conclusions and some implications for future
experiments are presented in section 4.

2. Method of theoretical and numerical calculation

2.1. Interface response theory of continuous media

Our theoretical analysis is performed with the help of the
interface response theory of continuous media, which allows
calculation of the Green’s function of any composite material.
In what follows, we present the basic concept and the
fundamental equations of this theory [35]. Let us consider
any composite material contained in its space of definition D
and formed out of N different homogeneous pieces located in
their domains Di . Each piece is bounded by an interface Mi ,
adjacent in general to j (1 � j � J ) other pieces through
subinterface domains Mi j . The ensemble of all these interface
spaces Mi will be called the interface space M of the composite
material. The elements of the Green’s function g(DD) of any
composite material can be obtained from [35]

g(DD) = G(DD) − G(DM)G−1(M M)G(M D)

+ G(DM)G−1(M M)g(M M)G−1(M M)G(M D), (1)

where G(DD) is the reference Green’s function formed out
of truncated pieces in Di of the bulk Green’s functions of the
infinite continuous media and g(M M) the interface element of
the Green’s function of the composite system. The knowledge
of the inverse of g(M M) is sufficient to calculate the interface
states of a composite system through the relation [35]

det[g−1(M M)] = 0. (2)
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Moreover, if U(D) represents an eigenvector of the reference
system, equation (1) enables the calculation of the eigenvectors
u(D) of the composite material and

u(D) = U(D) − U(M)G−1(M M)G(M D)

+ U(M)G−1(M M)g(M M)G−1(M M)G(M D). (3)

In equation (3), U(D), U(M), and u(D) are row vectors.
Equation (3) provides a description of all the waves reflected
and transmitted by the interfaces, as well as the reflection and
transmission coefficients of the composite system. In this case,
U(D) is a bulk wave launched in one homogeneous piece of
the composite material [17].

2.2. Inverse surface Green’s functions of the
elementary constituents

For the sake of simplicity, we embark on the simpler one-
dimensional system made of nonviscous fluid tubes. The
calculations at hand simplify because the transverse speed
of sound vt is zero in nonviscous fluids. Nevertheless, the
ordinary wave equation is inapplicable to inhomogeneous
system. The correct wave equation, namely the equation of
motion in the framework of the acoustic approximation, is

ρ
∂2u
∂ t2

= ∇[(ρ/a)v2∇ · (au)] (4)

where ρ(r) is the mass density, a(r) the cross section and
v(r) the longitudinal speed of sound. In the case of acoustic
approximation, ∇ × (ρu) = 0. Therefore, it is possible to
define a scalar potential �(r, t) such that ρu = ∇�. Then
equation (4) may be cast in the form of a scalar equation

[ρ

a
v2

]−1 ∂2�

∂ t2
= ∇ · [(ρ/a)−1∇�]. (5)

This is the starting point to be followed by the interface
response theory [29].

In the following we consider a system made of
homogeneous isotropic slender tubes i full of the same fluid
of mass density ρ and velocity of sound v0. Each tube is
characterized by its impedance Zi = ρv0/ai , where ai is the
cross section.

In the case of an infinite homogeneous one-dimensional
slender tube along the x-axis, equation (5) becomes

(ρ

a

)−1
[
∂2�

∂x2
− α2

]
�(x) = 0, (6)

where α2 = −ω2

v2
0

and ω is the angular frequency of the wave.

Then, the corresponding Green’s function is defined by [29]

(ρ

a

)−1
[
∂2�

∂x2
− α2

]
G(x, x ′) = δ(x − x ′), (7)

whose solution is given by

Gi (x, x ′) = −j

2ω
Zi e

−α|x−x′ | (8)

where α = −jk, k = ω/v0 and j = √−1.

Before addressing the problem of the simple structure
presented in this work (see figure 1), it is helpful to know the
surface elements of its elementary constituents, namely, the
Green function of a finite slender tube of length di , i = 1, 2, 3,
and of a semi-infinite tube. The finite slender tube of length d2

is bounded by two free surfaces located at x = 0 and x = d2.
These surface elements can be written in the form of a (2 × 2)

matrix g2(M M), within the interface space M = {0,+d2}.
The inverse of this matrix takes the following form [29]:

g−1
2 (M M) =

( − ωC2
Z2 S2

ω
Z2 S2

ω
Z2 S2

− ωC2
Z2 S2

)
(9)

C2 = cos(kd2), S2 = sin(kd2). The inverse of the surface
Green’s functions of the dangling resonators grafted at the
sites {0} and {d2} with rigid boundary conditions at their ends
is given by g−1

1 (0, 0) = −NωC1/Z1S1 and g−1
3 (d2, d2) =

−N ′ωC3/Z3S3, where Ci = cos(kdi), Si = sin(kdi), i = 1, 3.
N and N ′ are the number of side branches on both sides of
the finite slender tube of length d2. The inverse of the surface
Green’s functions of the two semi-infinite tubes surrounding
the whole structure is given by g−1

s (0, 0) = g−1
s (d2, d2) =

jω/Zs , where Zs = ρv0/as . In what follows, we suppose
that all the tubes have the same cross section (i.e. a1 =
a2 = a3 = as = a), or equivalently the same impedances
(i.e. Z1 = Z2 = Z3 = Zs = Z = ρv0/a). We report
on results of calculated transmission coefficients and phase
or phase time as a function of frequency. Using the Green’s
function method [29], the expression giving the inverse of the
Green’s function of the whole system given in the inset of
figure 2(c) can be obtained from a linear superposition of the
above inverse Green’s functions of the constituent, namely

g−1(M M) = −ω

Z

(
C2
S2

+ NC1
S1

− j − 1
S2

− 1
S2

C2
S2

+ N ′C3
S3

− j

)
. (10)

2.3. Transmission coefficient

Let us consider an incident wave U(x) = e−jαx launched
in the left semi-infinite waveguide (figure 1). With the
help of equations (3), (8) and (10), one easily finds
the transmission wave in the right semi-infinite waveguide
(figure 1), namely [28, 29] t = (2jω/Z)g(0, d2), or
equivalently

t = 2S1S3

χ1 − jχ2
(11)

where

χ1 = S2(N S3C1 + N ′ S1C3) + 2C2S1 S3 (12)

and

χ2 = −NC1(S3C2 + N ′S2C3)− N ′C2C3S1 + 2S1S2S3. (13)

From the expression of t (equation (4)), one can deduce
the transmission coefficient

T = 4S2
1 S2

3

χ2
1 + χ2

2

(14)
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Figure 2. Left panel. (a) Transmission coefficient versus the reduced wavevector kd1/π for a structure (depicted in the inset) consisting of an
infinite line with one grafted segment of length d1. The one-dimensional tubes constituting the infinite line and the finite segment are assumed
to be of the same cross section. The boundary conditions at the end of the stubs are rigid. (c) Transmission coefficient versus the reduced
wavevector kd2/2π for the structure depicted in the inset with d2 = 2d3 = 2d1. (e) The same as in (c) but for the structure depicted in the
inset. Right panel. (b), (d), (f) The same as in the left panel but for the variation of the phase.

as well as the phase

ϕ = arctan(χ2/χ1) + π �[S1S3] (15)

where � means the Heaviside function. From equations (4)
and (7) one can notice that the transmission zeros are induced
by the side branches (i.e. S1 = 0 or S3 = 0). When the
expression S1S3 changes sign at some frequencies denoted by
ωn , then the phase (equation (8)) exhibits a jump of π .

Another interesting quantity is the first derivative of ϕ with
respect to the frequency, which is related to the delay time

taken by the phonons to traverse the structure. This quantity,
called phase time, is defined by [30, 31]

τϕ = dϕ

dω
(16)

and can be written as

τϕ = d

dω
arctan(χ2/χ1)

+ π
∑

n

sgn

[
d

dω
(S1S3)ω=ωn

]
δ(ω − ωn) (17)
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where sgn means the sign function. Furthermore, the density
of states (DOS) of the present composite system from which
we have subtracted the DOS of the semi-infinite tubes is given
by [31]

n(ω) = 1

π

d

dω
arctan(χ2/χ1). (18)

Because of the second term in the right-hand side of
equation (10), one can deduce that τϕ �= πn(ω), as τϕ

(equation (10)) may exhibit δ functions at the transmission
zeros that do not exist in the variation of the DOS
(equation (11)). However, if the system does not exhibit
transmission zeros, then �[S1S3] = 0 and τϕ = πn(ω). Let
us mention that phase time and negative δ functions associated
with the transmission zeros in asymmetric loop structures made
of two different coaxial cables and slender tubes have been
observed, respectively, in recent experiments by El Boudouti
et al [32] and Robertson et al [16].

It should be pointed out again that the validity of our
results is subject to the requirement

√
ai � di , λ, i.e. the

cross section of the slender tubes being negligible compared
to their length and to the propagation wavelength λ. The
assumption of monomode propagation is then satisfied. It
is worthwhile to notice that this model has been applied
successfully to reproduce experimental measurements on band
gaps, defect modes and group velocities in structured acoustic
waveguides [7, 8, 12, 16].

3. Transmission gaps and Fano resonances

Before addressing the problem of the whole structure described
above (figure 1), let us first recall briefly the results of
a particular case necessary for the understanding of wave
propagation in the structures shown in figure 1; namely, if
d2 = 0, N = 1 and N ′ = 0, we obtain the transmission
function of a simple structure consisting of one resonator
grafted on an infinite guide (see the inset of figure 2(a)):
t = S1/(S1 + jC1/2). This expression enables us to deduce
the transmission coefficient T = |t|2 = 4S2

1/(4S2
1 + C2

1 ) and
the phase ϕ = π �(S1) − arctan(C1/2S1).

We can see that the transmission coefficient is equal
to zero when kd1 = l ′π , where l ′ is a positive integer.
The variation of T versus the reduced wavevector kd1 (or
equivalently the reduced frequency ωd1/v0) is reported in
figure 2(a). T is equal to zero for kd1 a multiple of π and
reaches its maximum value of unity for kd1 an odd multiple
of π/2. The frequencies of the transmission zeros given by
fg such as fg = l ′v0/2d1 correspond to the eigenmodes of
the grafted finite branch. This grafted branch behaves as
a resonator and this simple composite system filters out the
modes fg. This phenomenon is related to the resonances
associated with the finite additional path offered to the acoustic
wave propagation. The variation of the phase versus kd1

(figure 2(b)) shows an abrupt change of π at the transmission
zeros and therefore the corresponding phase time is different
from the DOS as mentioned above.

For the structure shown in the inset of figure 2(c),
equation (4) clearly shows that the transmission zeros are due
only to the dangling resonators (i.e. when S1 = 0 or S3 = 0).

Figure 2(c) gives the transmission coefficient in the presence of
two identical dangling resonators (i.e. N = N ′ = 1 and d1 =
d3 = 0.5d2). One can notice that the transmission coefficient
presents well defined dips induced by the grafted branches.
This dip transforms into a large transmission gap when the
number of branches increases, as illustrated in figure 2(e) for
N = N ′ = 2. It is worthwhile to mention that, because of
the existence of two resonators in figure 2(c), one can expect
two phase drops of π (i.e. 2π ) at the transmission zeros given
by S1 = S3 = 0 (i.e. kd2/2π = 1, 2, . . .). However, one
can see in figure 2(d) that the phase presents only a phase
drop of π . This is due to the existence of a resonant state
with zero width at these values of kd2/2π , which induces a
phase jump of +π ; these resonances collapse when d1 = d3 is
taken exactly equal to 0.5d2. These resonances are called ghost
Fano resonances in [33, 34]. To enlarge these resonances, we
have to take d1 and d3 slightly different from 0.5d2. Indeed, at
kd2/2π = 1, 2, . . . the expression of the transmission function
(equation (4)) becomes

t = 2S1 S3

2S1S3 + j sin[k(d1 + d3)] . (19)

So, if k(d1 + d3) = mπ but kd1 �= m1π and kd2 �= m2π

(m, m1 and m2 are integers), one obtains a resonance that
reaches unity (i.e. t = 1). An example corresponding to this
situation is given in figure 3(a), where d1 = 0.46d2 and d3 =
0.54d2 (with d1 + d3 = d2). One can notice that the resonance
at kd2/2π = 1 is squeezed between two zeros (indicated
by solid circles on the abscissa of figure 3(a)) induced by
the dangling resonators, as also illustrated in the curve of the
variation of the phase (figure 3(b)). The width of this resonance
increases as d1 and d3 deviate from 0.5d2 (see below). In
the particular case where kd1 = m1π and kd2 = m2π ,
the numerator and denominator of t (equation (12)) vanishes
altogether. In this case, the resonance as well as the two zeros
induced by the resonators fall at the same position, so the
resonance collapses, the transmission coefficient vanishes and
the phase drops by π as shown in figure 2(d).

The resonance in figure 3(a) shows the same character-
istics as a Fano resonance but with two zeros of transmis-
sion around the resonance instead of one as is usually the
case [21, 22]. Indeed, one can obtain an approximate ana-
lytical expression for the transmission function (equation (4))
in the vicinity of the resonance. A Taylor expansion around
kd2 = 2π (i.e. kd2 = 2π + ε with ε/2π � 1) enables us to
obtain

t = ζ ζ ′

2ε2 + ζ ζ ′ + j ε(4 − ζ ζ ′/2)
(20)

where ζ = 2 + ε(1 + /π), ζ ′ = −2 + ε(1 − /π)

and  is the detuning of d1 and d3 from 0.5d2 (i.e.  =
2π(0.5 − d1/d2) = 2π(−0.5 + d3/d2)).

From equation (12), one can show that the transmission
coefficient T can be written (following the Fano line
shape [21]) in the form

T = A
(ε + q1�)2(ε − q2�)2

ε2 + �2
, (21)

5
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Figure 3. (a) The same as in figure 2(a), but the lengths of the resonators are taken such that d1 = 0.46d2, d3 = 0.54d2 and N = N ′ = 1.
Solid circles on the abscissa indicate the positions of the transmission zeros induced by the dangling resonators on both sides of the resonance.
(c) The same as in (a) but for the variation of the phase. (b), (d) The approximate results (open circles) around the resonance. (e) The same as
in (a) but the resonators are taken to be of identical lengths d1 = d3 = 0.46d2. (g) The same as in (c) but for the variation of the phase.
(f), (h) The approximate results (open circles) around the resonance.

where A = (1 − 2/π2)2/(4 + 22)2. � = 22/(2 + 2)

characterizes the width of the resonance falling at ε = 0.
q1 = (2 + 2)/(1 + /π) and q2 = (2 + 2)/(1 −
/π) are the coupling parameters; they give qualitatively
the interference between the bound states and the propagating
continuum states [21–23]. One can notice that when increasing
, � increases and q decreases. The results of the approximate
expression (equation (14)) are shown in figure 3(b) by open
circles. These results are in accordance with the exact ones

(solid lines) and clearly show that the resonance is of Fano
type with q1 � 7.6, q2 � 8.9 and width 2� � 0.12. The
commonly studied Fano resonances are asymmetric because of
the presence of only one transmission zero near the resonance
(see below). In addition, in the electronic counterpart studies,
a perturbation is often introduced to the system in order
to create the resonance state [21–24]. However, the above
calculation shows that, without introducing any perturbation
in the structure, one can find a well defined symmetric

6
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Fano resonance with a width 2� and coupling parameters q1

and q2 that can be adjusted by tailoring the lengths of the
resonators (i.e. ). Equation (13) enables us also to deduce
an approximate expression for the phase as

ϕ = π�(ζ ) + π�(ζ ′) − arctan[ε(4 − ζ ζ ′/2)/(2ε2 + ζ ζ ′)].
(22)

This function is plotted by open circles in figure 3(d) and
clearly shows two abrupt phase changes of π at ζ = 0 and
ζ ′ = 0 (i.e. ε1 = −q1� and ε2 = q2�) in accordance with the
exact results (solid line).

One can also create an asymmetric Fano resonance by
adjusting the transmission zeros on only one side of the
resonance; this can be obtained by considering a structure
where the resonators are supposed to be identical with lengths
slightly different from 0.5d2. This is shown in figure 3(e) for
d1 = d3 = 0.46d2 and N = N ′ = 1. Indeed, an analytical
Taylor expansion around kd2 = 2π enables us to write the
transmission function (equation (14)) as

t = 2ξ 2

(ξ + j)(ε + 2ξ − jεξ)
(23)

where ξ =  + ε(1 + /π)/2 and  is the detuning of the
lengths of the two resonators from 0.5d2 (i.e.,  = 2π(d1/d2−
0.5)).

From the expression of t (equation (16)), one can deduce
the following Fano line shape transmission coefficient:

T = B
1

1 + ξ 2

(ε − εR + q�)4

(ε − εR)2 + �2

� B
(ε − εR + q�)4

(ε − εR)2 + �2
(24)

where B = (1 + /π)4/16(1 + /2π)2.
� = 2(1 − /2π)/4(1 + /2π)2 and εR = −/(1 +

/2π) characterize the width and the shift of the resonance
respectively, whereas q = 4(1 + /2π)/(1 + /π)(1 −
/2π) is the Fano parameter. One can notice that the
resonance shifts slightly from kd2 = 2π and its width is small
as compared to the preceding case; this is in accordance with
the numerical results of figures 3(a) and (e). Also q increases
when  decreases and tends to infinity when  vanishes. In
this case the resonance falls at εR = 0 and its width 2�

reduces to zero (figure 2(c)), as expected. The results of
the approximate expression (equation (17)) are sketched (open
circles) in figure 3(f) for  = 2π(d1/d2 − 0.5) = −0.08π

(i.e. d1/d2 = 0.46). These results are in accordance with the
exact ones (solid lines) and clearly show that the resonance is
of Fano type with q � 16 and width 2� � 0.035.

Concerning the evolution of the phase of the phonons
in this structure, one can notice from equation (4) that the
numerator of the transmission function t vanishes when S1 =
S3 = 0 (or equivalently ξ = 0 in the approximate result
(equation (16)) at kd2/2π = d2/2d1 = 1.086 indicated by a
filled circle on the abscissa axis of figure 3(f). The transmission
zeros induced by the two identical resonators fall at the same
frequency; therefore, the phase (figures 3(g) and (h)) shows a
phase drop of 2π at these frequencies. Indeed, as the phase is
defined modulo 2π , the 2π phase change cannot be observed

if the absorption is neglected in the system. The absorption can
be considered by adding for example a small imaginary part ε

to the frequency ω with ε ≈ 0, then the abrupt phase drop can
be observed. The phase drops give rise to negative delta peaks
in the transmission phase time as illustrated in figures 4(c)
and (g) as well as in the corresponding approximative results
shown by open circles in figures 4(d) and (h). A recent similar
work has been performed by Rotter and Sadreev [35] on two
single quantum dots coupled by a wire of finite length and
neglecting the absorption. They found that at the transmission
zeros the phases jump by mostly (but not always) π . However,
our results show that the phase may jump by even 2π if the
absorption is taken into account.

The small absorption in the tubes can also considerably
affect the amplitude of the Fano resonances, which becomes
less than unity as shown in figures 4(a), (b), (e) and (f). It
is worthwhile to notice that recent experiments by Robertson
et al [16] on an asymmetric loop made of slender tubes have
shown the existence of negative phase times and therefore
negative group velocities around the transmission zeros in
analogy with our experiments on photonic crystals made of
coaxial cables [32]. These results show, in accordance with
section 2, that the phase time is different from the density of
states by the occurrence of additional delta peaks [14].

The Green’s function approach enables one also to deduce
the local density of states (LDOS). The details of these
calculations are given in [28]. The LDOS reflects the behavior
of the square modulus of the pressure field inside the structure.
An analysis of the LDOS as a function of the space position
(figure 5) clearly shows that the Fano resonances in figures 3(a)
and (e) are confined inside the slender tube and the resonators
(see figures 5(a) and (b) respectively). In particular, the
pressure is maximum in the middle of the finite tubes and
vanishes at their extremities. Therefore, these resonances could
be classified as local resonances.

As mentioned above, through our analysis we use the
one-dimensional model for the acoustic waveguide network
where the cross section of the slender tubes is negligible as
compared to their length and to the propagation wavelength
λ. However, if the cross section of the slender tubes is of
the same order of magnitude as compared to their length
and to the propagation wavelength λ, then a two-dimensional
model is necessary [10, 36, 37]. Indeed, it was shown
recently [36, 37] that the transmission zeros induced by the
stubs in two-dimensional phononic crystals strongly depend
on the number of stubs grafted at each site as well as on the
distance between the stubs. Similar results to those presented
in this work have been observed in quantum waveguide
nanostructures [38]. In particular, when the cross sections
of the wires are of nonzero width, the multimode effect and
the matching of transverse modes have been considered [39].
In addition to the quantization of the conductance which is
due to the lateral confinement, It has been shown that the
existence of crosses and bends in the structure may also result
in bound states associated with the cross sections of these
contact points [40–43]. One can expect the same phenomena
in acoustic waveguides due to the analogy between electronic
and acoustic excitations in waveguides. Therefore, in such

7
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Figure 4. (a), (b), (e), (f) The same as in figures 3(a), (b), (e), (f) but here the absorption is taken into account by adding a small imaginary
part to the frequency. The solid circles indicate the positions of the transmission zeros. (c), (d), (g), (h) The same as in figures 3(c), (d), (g), (h)
but for the phase time.

geometries, the position and the width of the transmission gaps
as well as the position and intensity of the Fano resonances in
the acoustic counterpart systems could be affected.

4. Summary and conclusion

In summary, we have clearly demonstrated that a simple
geometry of a slender tube with dangling side resonators on
both sides can pave the way to the obtention of gaps in the
sound propagation. The existence of the stop bands in the
spectrum is attributed to the zero of transmission associated
with the dangling resonators. The width of the transmission

gaps depends on the number of the side resonators grafted on
both sides of the slender tube. Besides the transmission gaps,
we have shown the existence of asymmetric and symmetric
Fano resonances that may lie near the vicinity of a transmission
zero or be squeezed between two transmission zeros. These
resonances are obtained by tailoring the lengths of the different
branches constituting the structure. A study of the phase of the
transmission function enables us to deduce several properties
of the wave propagation through such structures as the phase
times and therefore the density of states. For the system studied
here, the phase time calculation is different from the density of
states. The resonant modes give rise to well defined peaks in
the phase time.

8
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Figure 5. The local density of states (LDOS) (in arbitrary units) as a
function of the space positions x/d2 and y/d2 along the horizontal
waveguide (full curve) and vertical waveguide (dashed curves)
respectively. (a) The LDOS corresponds to the Fano resonance in
figure 3(a); (b) the same as in (a) but for the resonance in figure 3(e).

The advantage of the simple acoustic waveguide model
presented in this work consists in finding simple analytical
expressions that enable us to discuss the existence of Fano
resonances as well as the effect of the different tube lengths
in tailoring these resonances without incorporating a defect in
the structure as is usually the case in the electronic counterpart
studies [21–24].

We believe that this paper brings a new piece of work
in the field of acoustic wave transport in 1D waveguide
structures and we hope that it will stimulate an experimental
observation [12, 16] of the transmission gaps and Fano
resonances exhibited by the simple acoustic waveguide
described in this work.
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[30] Büttiker M and Landauer R 1982 Phys. Rev. Lett. 49 1739
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